428

Digital System Design in Practice

tom side of a breadboard. Wire-wrap sockets are still available for DIPs in standard sizes for two or
three wraps per post. The actual wrapping is accomplished with a special tool—either manual or au-
tomatic.

A benefit of wire-wrapping is that dense wiring can be achieved without the risk of melting
through insulation with a hot soldering iron. Changes in connectivity are made by unwrapping a
wire. However, if the wire to be unwrapped is at the bottom of a stack of other wires, those others
may need to be removed as well. A fully manual wire-wrap process requires that a wire be cut to
length and stripped at each end to expose approximately 1 in of bare wire, and the wrapping tool is
turned around the square post at each end. Automatic wire-wrap guns are available that automati-
cally strip and wrap wire, making the process move fairly quickly. The popularity of wire-wrapping
has diminished significantly over time as clock frequencies have increased and PCBs have become
much less expensive in small prototyping quantities. It may still be an appropriate construction tech-
nique for those who are less comfortable with a soldering iron and who require very dense wiring.

19.4 MICROPROCESSOR RESET

Almost all digital systems hinge around some type of microprocessor that controls the basic opera-
tion of specific peripherals. Smaller embedded systems may use microcontrollers that contain inte-
grated microprocessor and memory elements. Others include discrete microprocessors. Regardless
of the form, a microprocessor requires a clean initialization sequence for it to begin executing the
program that has been designed for it. It is advisable to design a simple and reliable scheme for the
microprocessor to boot so that initial system bring-up can proceed smoothly. Once a microprocessor
successfully boots, it can be used to run software that helps with the remainder of system bring-up.
Functions such as memory debug, accessing control bits in peripheral logic, and setting up a debug-
ging console that can be accessed from a terminal program. All require that the microprocessor be
alive. When a microprocessor doesn’t boot correctly, it is difficult to make further progress, because
the microprocessor is usually the gateway to the rest of the system.

Reset is the first hardware element, subsequent to stable power supplies, that a microprocessor
needs to boot. Some microcontrollers have built-in power-on-reset circuits that guarantee a valid re-
set pulse to the internal microprocessor. Other microprocessors require that an external reset pulse
be applied. While not complicated, generating a reliable power-on-reset has eluded more than one
engineer. Dedicated power-on-reset ICs have become available in recent years that all but guarantee
clean reset behavior once the power supplies become stable. At their simplest, these devices have
three terminals (power, ground, and reset), and reset is held active-low for several hundred millisec-
onds after power passes a predetermined threshold. More complex devices have multiple power in-
puts for multivoltage systems, and the deassertion of reset occurs only when all power inputs have
exceeded certain thresholds for a minimum time. Power-on-reset ICs are available from companies
including Linear Technology, Maxim, and National Semiconductor.

When a dedicated power-on-reset chip is unavailable, the function can be implemented using dis-
crete components in many configurations. Two simple schemes involving an RC circuit along with a
discharge diode are shown in Fig. 19.7. Both circuits hold the microprocessor in reset for approxi-
mately 10 ms after power is applied. The first circuit uses just three passive components and starts
out with RESET* at logic 0. As the capacitor charges, it reaches the logic-1 voltage threshold of the
microprocessor. A diode is present to rapidly discharge the capacitor when power is removed. It be-
comes forward biased as V¢ drops and a charge is present on the capacitor. This ensures that the re-
set circuit will behave properly if the system is quickly turned on again and also prevents a capacitor
discharge path through the microprocessor. Incomplete discharge is more likely with a larger RC



Designing for Success 429

VCC VCC
= 1uF
10kQ
RESET*
RESET*
== TuF 10kQ

FIGURE 19.7 Discrete power-on-reset circuits.

time constant, as is required by some microprocessors. Better results are obtained using a Schottky
diode, because its lower forward voltage discharges the capacitor to a lower voltage.

The second circuit is more robust, because it uses a Schmitt trigger to drive the microprocessor’s
input, guaranteeing a clean digital transition despite variations in the slope of the RC voltage curve.
This is especially helpful when long RC time constants are required to generate long reset pulses as
dictated by a microprocessor. A 74LS14 or similar Schmitt-trigger logic gate may be convenient to
design into a system, and it can be used in places other than the power-on-reset circuit. Alternatively,
a smaller voltage comparator can be used to implement the same function by designing in hysteresis.
Before power-on, the inverter input node is at 0 V. At power-on, the voltage step of the power supply
passes through the capacitor, because the voltage across the capacitor is initially 0 V and brings the
input node to a logic-1 voltage, which in turn causes RESET* to be driven to logic 0. The resistor im-
mediately begins pulling the voltage toward ground and eventually causes RESET* to be deasserted.
The diode is present to clamp the inverter input node to ground during power-down. Clamping is de-
sirable, because the resistor has already pulled the input node to ground and, without the diode, a
negative V¢ step would force the input node to a negative voltage. When the diode is present, the in-
put node remains near 0 V and is able to serve its intended purpose during an immediate power-on.
The diode also prevents a large negative voltage from potentially damaging the inverter.

Power-on is not the only condition in which a microprocessor reset may be desired. Especially
during the debugging process, it can be very useful to have a reset button that can quickly restart the
system from a known initial state when software under development encounters fatal bugs. Many of
the aforementioned power-on-reset ICs contain circuitry to debounce an external pushbutton. When a
button is pushed, it may appear that a clean electrical connection is made and then broken when the
button is released. In reality, the contact and release events of a button are noisy for brief periods of
time as the internal metal contacts come into contact with each other. This noise or bounce may last
only a few milliseconds, but it can cause a microprocessor to improperly exit its reset state. Debounc-
ing is the process of converting the noisy edges of a pushbutton into a clean pulse. Filtering is a gen-
eral solution for debouncing a noisy event and can be performed in an analog fashion or digitally by
taking multiple samples of the event and forcing the bouncing samples to one state or the other.

19.5 DESIGN FOR DEBUG

“To err is human” is a truism that directly applies to engineering. The engineering process is a com-
bination of design and debugging in which inevitable problems in the original implementation are





